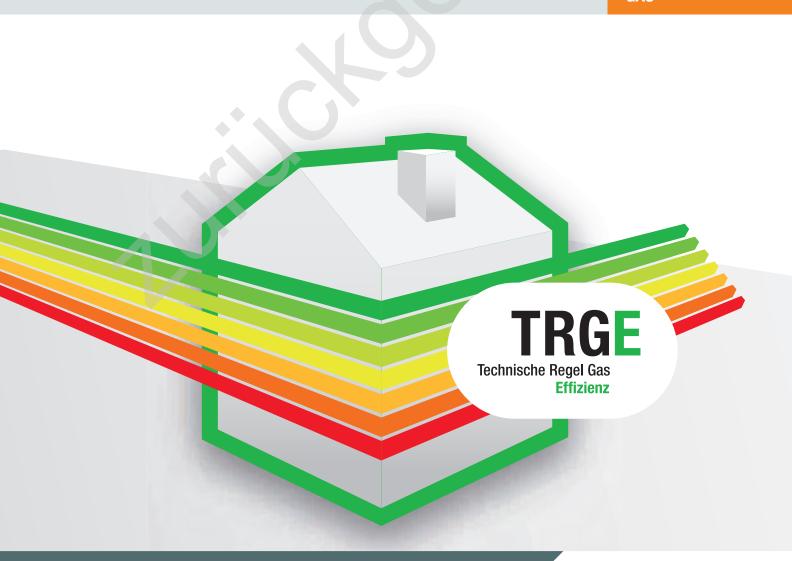


Deutscher Verein des Gas- und Wasserfaches e.V.

www.dvgw-regelwerk.de

DVGW-TRGE Effizienz


Technische Regel Teil 1 – Wärmeversorgung Gebäude

Technical Rule Gas Efficiency
Part 1 – Heat supply buildings

DVGW G 800-1 (M) November 2020

Technische Regel – Merkblatt –

GAS

Der DVGW mit seinen rund 14.000 Mitgliedern ist der technisch-wissenschaftliche Verein im Gas- und Wasserfach, der seit mehr als 160 Jahren die technischen Standards für eine sichere und zuverlässige Gas- und Wasserversorgung setzt, aktiv den Gedanken- und Informationsaustausch in den Bereichen Gas und Wasser anstößt und durch praxisrelevante Hilfestellungen die Weiterentwicklung im Fach motiviert und fördert.

Der DVGW ist wirtschaftlich unabhängig, politisch neutral und dem Gemeinwohl verpflichtet.

Das DVGW-Regelwerk ist ein zentrales Instrument zur Erfüllung des satzungsgemäßen Zwecks und der Aufgaben des DVGW. Auf Basis der gesetzlichen Bestimmungen werden im DVGW-Regelwerk insbesondere sicherheitstechnische, hygienische, umweltschutzbezogene, gebrauchstauglichkeitsbezogene, verbraucherschutzbezogene und organisatorische Anforderungen an die Versorgung und Verwendung von Gas und Wasser definiert. Mit seinem Regelwerk entspricht der DVGW der Eigenverantwortung, die der Gesetzgeber der Versorgungswirtschaft zugewiesen hat – für technische Sicherheit, Hygiene, Umweltund Verbraucherschutz.

Benutzerhinweis

Mit dem DVGW-Regelwerk sind folgende Grundsätze verbunden:

- Das DVGW-Regelwerk ist das Ergebnis ehrenamtlicher T\u00e4tigkeit, das nach den hierf\u00fcr geltenden Grunds\u00e4tzen (DVGW-Satzung, Gesch\u00e4ftsordnung GW 100) erarbeitet worden ist. F\u00fcr dieses besteht nach der Rechtsprechung eine tats\u00e4chliche Vermutung, dass es inhaltlich und fachlich richtig ist.
- Das DVGW-Regelwerk steht jedermann zur Anwendung frei. Eine Pflicht kann sich aus Rechts- oder Verwaltungsvorschriften, einem Vertrag oder sonstigem Rechtsgrund ergeben.
- Durch das Anwenden des DVGW-Regelwerkes entzieht sich niemand der Verantwortung für eigenes Handeln. Wer es anwendet, hat für die richtige Anwendung im konkreten Fall Sorge zu tragen.
- Das DVGW-Regelwerk ist nicht die einzige, sondern eine wichtige Erkenntnisquelle für fachgerechte Lösungen. Es kann nicht alle möglichen Sonderfälle erfassen, in denen weitergehende oder einschränkende Maßnahmen geboten sein können.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-89554-240-4

© DVGW, Bonn, November 2020 DVGW Deutscher Verein des Gas- und Wasserfaches e.V. Technisch-wissenschaftlicher Verein

Josef-Wirmer-Straße 1-3 D-53123 Bonn

Telefon: +49 228 9188-5 Telefax: +49 228 9188-990 E-Mail: info@dvgw.de Internet: www.dvgw.de

Jede Art der urheberrechtlichen Verwertung und öffentlichen Wiedergabe, auch auszugsweise, nur mit Genehmigung des DVGW Deutscher Verein des Gas- und Wasserfaches e.V., Bonn, gestattet.

Vertrieb: Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Josef-Wirmer-Str. 3, 53123 Bonn

Telefon: +49 228 9191-40 · Telefax: +49 228 9191-499 E-Mail: info@wvgw.de · Internet: shop.wvgw.de

Artikel-Nr.: 310809

Technische Regel Gas Effizienz (DVGW-TRGE) Teil 1 - Wärmeversorgung Gebäude

Inhalt

Vorwo	ort	5
Einleit	tung	7
1	Anwendungsbereich	9
2	Normative Verweisungen	
3	Begriffe und Abkürzungen	10
3.1	Abkürzungen	
3.2	Begriffe	11
3.2.1	Gas-plus-Technologie	11
3.2.2	COP	
3.2.3	Jahresnutzungsgrad	12
3.2.4	Definitionen von Niedrigenergiehäusern	12
4	Beschreibung von Technologien	13
4.1	Heizwertgeräte	13
4.1.1	Niedertemperatur (NT)-Kessel	13
4.2	Brennwertgeräte	14
4.3	Gas-Hybridanlagen	14
4.4	Wärmepumpen	15
4.4.1	Kennzahlen von Wärmepumpen	16
4.4.2	Kennzahlen von Gaswärmepumpen	18
4.5	Solarthermie	19
4.6	Kraft-Wärme-Kopplung (KWK)	20
4.6.1	Allgemeines	20
4.6.2	Einsatzmöglichkeiten:	20
4.6.3	KWK mit Verbrennungsmotoren	21
4.6.4	Brennstoffzelle	21
5	Effiziente Anwendungstechnologien im Bestand	22
5.1	Allgemeines	22
5.2	Gesetze und Richtlinien für Anwendungen im Bestand	23

5.2.1	Energieeinsparung - EnEG, EnEV, EEWärmeG (ab 01.11.2020 GEG)23	
5.2.2	Energieverbrauchskennzeichnung - EnVKG und EnVKV	
5.2.3	Reduzierung Immissionen - 1. BImSchV	24
5.3	Förderungen für Wärmeerzeugungsanlagen	25
5.4	Einfluss von Sanierungsmaßnahmen auf die Effizienz	25
5.5	Planungshilfe zur Sanierung der Heizungsanlage eines Einfamilienhauses	26
5.6	Planungshilfe zur Sanierung von Heizungsanlagen in Mehrfamilienhäusern	29
5.7	Planungshinweise für Solarthermieanlagen zur Warmwasserbereitung und	
	Heizungsunterstützung	30
6	Anwendungen von effizienten innovativen Gastechnologien im Neubau	31
6.1	Gesetze und Richtlinien	31
6.1.1	Energieeinsparung GEG	31
6.1.2	Energieverbrauchskennzeichnung - EnVKG und EnVKV	33
6.1.3	Lüftungskonzept - DIN 1946-6	34
6.2	Förderungen für Wärmeerzeugungsanlagen	35
6.3	Effizienzmaßnahmen und Wärmeerzeugungstechnologien im Neubau	35
6.4	Planungshilfe für die Gebäudetechnik	37
7	Gase aus erneuerbaren Quellen	39
7.1	Biogasanwendungen	39
7.2	Wasserstoffanwendungen	40
7.3	CO ₂ -Einsparungspotential von erneuerbaren Gasen	41
Anhar	ng A (informativ) – Technische Daten und Eigenschaften der Technologien	45
A.1	Niedertemperaturkessel	45
A.2	Brennwertkessel	45
A.3	Elektro- und Gaswärmepumpen	46
A.3.1	Gegenüberstellung Wärmepumpen	46
A.4	Flach- und Röhrenkollektoren	48
A.5	PEMFC- und SOFC-Brennstoffzellen	48
Anhar	ng B (informativ) – Bewertende Vergleiche von Gaswärmepumpen und anderen	
	Heiztechnologien	50
B.1	Vorteile der Gaswärmepumpe	
B.2	Nachteile der Gaswärmepumpe	50
Anhar	ng C (informativ) – Beispiel zur Sanierung eines Mehrfamilienhauses	52
Litoro	tur- und Quellenverzeichnis	E E
Litera	iui- unu Quenenverzeicinis	55

Vorwort

Dieser Technische Hinweis wurde vom Arbeitskreis "Technischer Hinweis Gebäudeeffizienz" im Koordinierungskreis "Wärmewende" erarbeitet.

Im Rahmen des Umwelt- und Verbraucherschutzes und zur Erreichung der europäischen und nationalen Klimaziele trägt der DVGW als anerkannter technisch-wissenschaftlicher Verein und Regelsetzer mit der Beschreibung neutraler technischer Lösungen dazu bei, den aktuellen Stand der Technik auf dem Gebiet effizienter Technologien zu beschreiben.

Mit diesem technischen Hinweis unterstützt der DVGW die Bundesregierung bei dem Ziel, eine wirtschaftliche, sozialverträgliche und vor allem klimaneutrale Energiewende umzusetzen. Dies kann aus Sicht des DVGW und seiner Fachexpertise aus der Branche mit dem Einsatz von effizienten Gastechnologien und erneuerbaren Gasen gelingen, die in einem Zwei-Energieträgersystem aus Strom und Gas sowohl Klimaneutralität als auch Versorgungssicherheit wirtschaftlich umsetzbar realisieren.

Dieser Technische Hinweis zeigt die Sanierungsmöglichkeiten für bestehende Gebäude mit Hilfe von effizienten Gastechnologien auf, die wirtschaftlich und praxisgerecht umsetzbar sind und große Potentiale zur CO₂-Einsparung bieten.

Ebenfalls gibt er Anleitung für die Nutzung und Kombinationsmöglichkeit von effizienten Gastechnologien für den Neubau, die sowohl die Erreichung der Klimaziele unterstützen als auch die Sektorenkopplung und Flexibilisierung der Energieträger für eine smarte Nutzung von Gebäuden ermöglichen.

Dieser technische Hinweis zeigt außerdem das enorme Potential von erneuerbaren Gasen auf, die einen maßgeblichen Beitrag auf dem Weg zur Klimaneutralität und Dekarbonisierung der Energieträger darstellen und appelliert somit auch an die Umsetzung einer nationalen Wasserstoffstrategie und der Einbindung erneuerbarer Gase für den Gebäudesektor.

Dieser technische Hinweis ist die Erstausgabe.